Categories
Project News

9th Symposium on Hydrogen, Fuel Cells and Advanced Batteries

Sabrina Campagna Zignani’s Poster Presentation Showcases Innovative Use of Non-CRM Materials for Synthetic Fuel Production

At the 9th Symposium on Hydrogen, Fuel Cells, and Advanced Batteries, held in the vibrant setting of Hyceltec 2024, the National Research Council of Italy (CNR) made waves with a groundbreaking poster presentation by Sabrina Campagna Zignani. The presentation focused on an innovative approach to the electrochemical conversion of carbon dioxide (CO2) into valuable synthetic fuels using non-critical raw materials (non-CRM).

A New Horizon in Synthetic Fuel Production

Zignani’s research delves into the current challenges and advancements in CO2 conversion technologies. Traditionally, copper-based materials have been the catalysts of choice due to their effectiveness in promoting this reaction. However, Zignani’s work introduces a novel copper oxide electrocatalyst combined with silver (CuO 70% Ag 30%), synthesized via the oxalate method and tested in a flow cell system.

Promising Results in Electrochemical Experiments

The electrochemical experiments, conducted at room temperature across varying potentials (-1.05V to -0.75V vs. RHE) in the presence of 0.1 M KHCO3, yielded impressive results. Gas and liquid chromatographic analysis revealed that the CuOx-based electrodes demonstrated a 25% selectivity for formic acid (HCOOH) at -0.55V, while ethylene (C2H4) achieved a 20% selectivity at -1.05V over CuOx.

Diverse Product Range from CO2 Conversion

The study highlighted the formation of various valuable chemicals including ethylene, ethanol, and propanol at more positive potentials. Additionally, products such as carbon monoxide (CO), acetate (CH3COO), ethylene glycol (C2H6O2), propionaldehyde (C3H6O), glycoaldehyde (C2H4O2), and glyoxal (C2H2O2) were detected, showcasing the versatility and potential of this catalytic system.

A Step Towards Sustainable Energy Solutions

The findings presented by Sabrina Campagna Zignani emphasize the promising future of synthetic fuel production from CO2 in alkaline environments at room temperature. This research marks a significant step forward in the quest for sustainable energy solutions, reducing dependency on critical raw materials and advancing the field of green chemistry.

For more details on the symposium and the innovative research presented, visit Hyceltec 2024.

Categories
Project News

Successful Commissioning of Exhaust Gas Feeding System into Carbon Capture Pilot Plant

We successfully commissioned the exhaust gas feeding system into our carbon capture pilot plant, located on the premises of RWE. During the test, a diesel engine was run at full load, and all of its exhaust gas was fed into the carbon capture unit.

Remarkably, we achieved a CO2 capture rate of over 90%, approximately 95%, despite the diesel exhaust having a lower CO2 content compared to the lignite-fired power plant emissions. This difference posed a greater challenge to the capture process, requiring extra vigilance and expertise from our operators. However, they managed the process efficiently and effectively.

While there are still some open items that need to be addressed, we are pleased to report that the system is now operational.

Categories
Project News

ECO2Fuel Project Showcased at the 245th ECS Meeting in San Francisco

Our project coordinator, Faria Huq from the German Aerospace Center (DLR), presented the ECO2Fuel project at the 245th ECS meeting in San Francisco, USA. This prestigious event provided an excellent platform to showcase the groundbreaking work being done under the ECO2Fuel initiative. Funded by the EU Horizon 2020, the project is making significant advancements in converting CO2 into valuable chemicals and fuels at low temperatures. 

Faria about the key highlights and developments shared during the meeting:

“I’m happy to share that ECO2Fuel project was presented at the 245th ECS meeting in San Francisco, USA! 🚀

The ECO2Fuel project, funded by EU Horizon 2020, is dedicated to innovate cutting-edge technology that converts CO2 into valuable chemicals and fuels under low temperature conditions. 🌱

During my presentation, I have shared the development in terms of cathode’s gas diffusion electrode, anion exchange membrane and 50kW electrolyser for large-scale fuel and alcohol production via CO2RR. Our work delves into the fabrication of the catalyst layer on porous transport layer, and this plays an important role in achieving high faradaic efficiencies for carbonaceous fuel production.

I was delighted to present our work to highly sought out scientists and industry experts. Their interest in our progress continues to show how valuable and important it is continuing making development.

A huge thank you to my incredible project partners who continue to put their effort in making incredible breakthroughs. Together, we’re pushing towards developing renewable energy system that help to prevent greenhouse gas emission. 💪

Stay tuned for more updates as we continue to innovate and drive change in the energy sector!”

Categories
Project News

Achievements of MONOLITHOS in ECO2Fuel

Development of NiFeOx electrocatalyst for OER

Anode NiFe oxide material developed under the ECO2Fuel project demonstrates high performance towards O2 Evolution Reaction (OER) and has been successfully produced in large scale by MONOLITHOS (Figure 1). The high electrochemical efficiency of the upscaled material has been verified into a CO2-H2O electrochemical cell.

Development of Cu2O electrocatalyst for CO2RR

Cathodic Cu2O material developed under the ECO2Fuel project demonstrates significant advancements in enhanced activity towards CO2 Reduction Reaction (CO2RR). The electrocatalyst is successfully produced by MONOLITHOS (Figure 2). Optimization of synthetic parameters and large-scale development of the material is ongoing for preparing highly efficient electrocatalyst with minimal wastes and energy consumption.

Categories
Project News

ECO2Fuel at the EUSEW Energy Fair on 11 – 13 June, 2024 in Brussels

We are happy to announce that ECO2Fuel will be showcased at the upcoming Energy Fair of the European Sustainable Energy Week (EUSEW) in Brussels from June 11th to 13th.

The EUSEW is an annual event that serves as a platform to network with key actors committed to promoting energy efficiency and renewable energies, while also facilitating knowledge exchange on effective policies and fostering innovation aligned with the EU’s energy and climate objectives. By bringing together influential figures insustainable energy, the Energy Fair encourages robust social connections and the sharing of critical insights, laying foundations for future cooperation.

Our participation in this event is made possible through the support of our partner, META Group, who will host an informative stand alongside representatives from various projects including RESPONDENT, RESPECT, TIGON, SSTAR, eFORT, CST4ALL, iEPB, HYScale, North Adriatic Hydrogen Valley – NAHV, H-HOPE, as well as the European Commission’s Horizon Results Booster initiative.

The Energy Fair is open to all onsite attendees at EUSEW 2024. We invite you to visit us on June 11th and 12th from 9:00 to 18:00 CEST, and on June 13th from 9:00 to 17:30 CEST. Find more information about the European Sustainable Energy Week here.

Categories
Project News

5th ECO2Fuel General Assembly Meeting

Last week, members of the project alliance convened in Mol, Belgium, at VITO’s premises for an engaging 5th general assembly meeting. The assembly centred on reviewing the significant advancements from the last six months and planning future actions.

Categories
Project News

Achievements and Challenges of MONOLITHOS in the ECO2Fuel Project

MONOLITHOS, a company actively engaged in the ambitious ECO2Fuel project, has marked significant milestones in the field of electrocatalyst development and environmental sustainability. This article highlights the key achievements and challenges faced by MONOLITHOS in this groundbreaking endeavor.

Achievements of MONOLITHOS in ECO2Fuel

1. Stable Scaling of NiFeOx Electrocatalyst: A notable accomplishment is the successful scaling up of the NiFeOx electrocatalyst process. This scaling has remarkably maintained the structure, composition, morphology  and performance of the electrocatalyst, ensuring its effectiveness and reliability.

2. Development of Cu2O Electrocatalyst: The Cu2O electrocatalyst, developed under the ECO2Fuel project, has shown exceptional results. Its potential has been recognized with the decision to upscale its production, indicating its pivotal role in future applications.

3. Enhanced Anode Catalyst Activity: The company has fully achieved its milestone regarding the enhancement of anode catalyst activity. This improvement signifies a leap forward in the efficiency and effectiveness of the catalysts used.

4. Progress in Cathode Catalyst Activity: The cathodic catalyst milestone has been successfully achieved by MONOLITHOS, demonstrating significant advancements in enhanced cathode catalyst activity. This progress is a testament to the company’s commitment to continuous improvement in catalyst development.

5. High Leaching Efficiencies: In an environmental triumph, the company has achieved over 99% leaching efficiencies for Cu and Ni from End-of-Life Membrane Electrode Assemblies (EoL MEAs). This was accomplished using an environmentally friendly hydrometallurgical leaching process, marking a significant step in sustainable practices.

6. Innovation with PtPd/CeZrO4 Catalyst: The synthesis of a PtPd/CeZrO4 catalyst through a wet impregnation process represents another innovative stride. This catalyst is set to be tested under simulated conditions involving diesel, biodiesel, and alcohol blends.

Figure 1. XRD pattern of NiFe-based anode electrocatalyst.
Figure 1. XRD pattern of NiFe-based anode electrocatalyst.
Figure 2. Recycling of EoL MEAs following an environmentally friendly hydrometallurgical leaching process
Figure 2. Recycling of EoL MEAs following an environmentally friendly hydrometallurgical leaching process
Figure 3. Representative pictures of the preparation of a PtPd/CeZrO4 catalyst following patented PROMETHEUS protocol
Figure 3. Representative pictures of the preparation of a PtPd/CeZrO4 catalyst following patented PROMETHEUS protocol
Figure 4. Fabrication of a full-scale monolith  using the slurry method to be tested under simulated diesel (diesel biodiesel/alcohol) blends conditions
Figure 4. Fabrication of a full-scale monolith using the slurry method to be tested under simulated diesel (diesel biodiesel/alcohol) blends conditions

Challenges Faced by MONOLITHOS

Despite these achievements, MONOLITHOS faces certain challenges in the ECO2Fuel project:

1. Cathodic Performance Targets: One of the main challenges is achieving the high-performance targets set for the cathodic aspect of the project. Meeting these targets is crucial for the overall success and efficiency of the project.

2. Supply Chain Delays: There is a potential risk of delays in acquiring necessary materials, such as electrocatalyst precursors, equipment, and other essential components. These delays could impact the project timeline and its milestones.

Conclusion

MONOLITHOS’s involvement in the ECO2Fuel project has been marked by significant achievements, particularly in the development and scaling of innovative electrocatalysts and in advancing environmentally friendly processes. However, challenges such as meeting high-performance targets and potential supply chain delays pose hurdles that need to be navigated. The company’s continued dedication and innovative approach will be key in overcoming these challenges and achieving further success in sustainable energy solutions.

Source: MONOLITHOS

Categories
Project News

Transforming Tomorrow: The ECO2Fuel Project’s Revolutionary Approach to Tackling Climate Change

In a world grappling with the challenges of climate change, the ECO2Fuel project emerges as a beacon of innovative solutions. This informative video delves into the heart of ECO2Fuel, a cutting-edge initiative aimed at converting CO2 emissions into sustainable fuels. Through engaging visuals and expert insights, the video unravels how this project harnesses renewable energy to mitigate environmental impacts. It’s a must-watch for anyone interested in the future of green technology and the European Union’s strides towards a sustainable future. Get ready to be inspired and enlightened by this groundbreaking journey into a cleaner, greener tomorrow.

Categories
Project News

Unveiling the ‘European Paradox’: Transforming Research into Real-World Solution

The actors in the R&D ecosystem find themselves facing the “European Paradox[1]“, according to which the research system encounters difficulty in translating scientific advancements into market-ready and user-friendly solutions. We are therefore faced with thousands of research projects funded by public funds, which have developed significant and numerous results, of which only a few have been used, thus failing to fully unleash their transformative potential in terms of social, economic, and scientific impact/value. Experience shows that this transformative potential can only be realized through effective use of the results, enabled by the implementation of exploitation and dissemination activities.

Sometimes, this paradox is also generated by the tendency to conceive the strategies for using results downstream of the research processes and not in consistence with the development of new solutions. All of this creates a gap between the challenge and its response. To bridge this gap, initial steps have been taken at the European level, where the guiding principles for the implementation of Horizon Europe[2] directly connect the maximisation of impacts (scientific, social, and economic) to the implementation of exploitation, dissemination, and communication activities, in synergy with other programmes and initiatives as well. In this process, which we can also attempt to apply to projects funded under Horizon 2020, such as ECO2Fuel, it becomes clear how the use of knowledge developed through publicly funded research plays a crucial role in enabling systemic transformations and mobilising associated benefits. Maximizing the long-term effect of investments in R&I involves all actors in the value chains and requires that research results become solutions capable of generating economic, social, and scientific value.

Unveiling the 'European Paradox': Transforming Research into Real-World Solutions

The Challenge

Citizens expect research to be a driving force in the transition towards a greener economy and a more equitable society. For this to happen, research results must be made available and used. It is the responsibility of the research community to actively participate in this process, ensuring that the knowledge developed transforms into solutions that bring value and benefits at the social, economic, and scientific levels. Alongside scientific excellence, the exploitation of research results, dissemination, and communication complete the innovation potential of research. They form the foundation on which scientific excellence rests, enabling the use, adoption of innovation, and its acceptance by potential users and citizens who will be informed, made aware, and ready to support ongoing processes.

The recent example of the fight against the Coronavirus has demonstrated the crucial role of research and innovation (R&I) in bringing benefits to our societies, making them resilient, and supporting the recovery of our economy. Only through the use of these new solutions can they become the driving force in overcoming this challenge. Without a predefined utilisation of results through exploitation and dissemination trajectories, it will not be possible to transform the outcome into benefits and, therefore, impact.

A (possible) SOLUTION: The problem-based approach

The need is to make available solutions (research results) that best address/solve the needs/problems of a specific target (explicit or latent), shortening the development cycles of solutions (products, services, etc.), optimizing the use of available resources, and evaluating whether a proposed usage model is feasible or not. Experience suggests that a good response to this need is offered by the Lean Startup approach[3]. This approach combines hypothesis-based experimentation and product testing to validate the result, involving the early potential adopters of the solution: the “early adopters”[4].

An important partner

The “early adopters” being guided by the problem include those who will adopt the solution starting from the development phase. This way the risk that the misalignment between demand and supply of “solutions” generates failure and undermines our expectations is minimised. Therefore, it is important to identify the problem bearers (the target group for exploitation and dissemination): the so-called “early adopters[5]“.

Figure 1 - Tecnology Adoption Lifecicle - Everett M. Rogers, Diffusion of Innovations, Free Press of Glencoe, Macmillan Company, 1962.
Figure 1 – Tecnology Adoption Lifecicle – Everett M. Rogers, Diffusion of Innovations, Free Press of Glencoe, Macmillan Company, 1962.

The next step is to move from this initial nucleus of adopters to an “early majority”. In this growth process, it is noticeable how many innovators fail to reach the “early majority” because they are unable to engage the “early adopters” correctly, thus blocking a virtuous and sustainable process of solution adoption.” The “early adopters” are thus the bridge that allows the transition from the laboratory to the “early majority,” representing the “market.” They are the ones to involve from the beginning of the research activity design phase and subsequently in the testing and validation phases of assumptions and the solution itself. This will enable us to prepare a plan for the use of the result and for any progress in terms of Technology Readiness Level (TRL).

This process is precisely what ECO2Fuel is implementing right now in its journey towards to use and impact. Currently, ECO2Fuel partners have identified Key Exploitable Results (KERs), and a problem-oriented characterization path has been undertaken. Its first crucial moment starts from January 2024 with the celebration of the first Exploitation Strategy Seminar involving all partners developing the KERs. It intends to leverage them after the project’s completion. This will be a lengthy journey involving us throughout the project’s duration, but the goal is precisely to make ECO2Fuel’s results available to play a role in building economic, social, and scientific value at the European level.


[1] “Green paper on innovation” (PDF). Retrieved 2011-05-01.

[2] HE Programme Guide: V4.0 – 15.10.2023 – Pag. 10 – https://ec.europa.eu/info/funding-tenders/opportunities/docs/2021-2027/horizon/guidance/programme-guide_horizon_en.pdf or: https://ec.europa.eu/info/research-and-innovation/strategy/support-policy-making/shaping-eu-researchand-innovation-policy/evaluation-impact-assessment-and-monitoring/horizon-europe_en#monitoringhorizon-europe e https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/horizon-dashboard

[3] Eric Ries – “The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses – Crown Currency – Sept. 2011.

[4] Everett M. Rogers, Diffusion of Innovations, Free Press of Glencoe, Macmillan Company, 1962.

[5] Ibidem – It can be asserted that innovators are those who “utilise” the “alpha” version (2.5%, often an industrial partner in a research and development project); the “early adopters” are the customers ready to “use” the “beta” version (13.5%).

Categories
Project News

ECO2Fuel Welcomes Trio of Sustainability Experts to Forge Ahead in Clean Energy Research

The ECO2Fuel consortium is proud to announce the addition of three distinguished members to its team, each bringing a wealth of knowledge and expertise to our innovative and sustainable energy mission.

Daniele Costa joins us as a seasoned Senior Researcher and Project Manager in Sustainable Energy Systems Assessment & Modelling at VITO. With over 15 years in the field, Daniele has a profound understanding of life cycle thinking tools, including prospective Life Cycle Assessment (LCA) and Life Cycle Sustainability Assessment (LCSA). Her prestigious career spans across major energy industry companies and renowned universities like the University of Porto and Vrije Universiteit Brussel (VUB). Daniele is an acclaimed author of over 30 peer-reviewed publications and has played significant roles in various R&D projects, particularly those funded by the European Union. Her expertise is especially relevant in bioenergy, bioeconomy, and forest-based industries.

At VITO, Daniele dedicates her efforts to the prospective sustainability assessment of energy technologies in H2020 and HEurope Projects, contributing to groundbreaking work in projects such as PERCISTAND, SOLMATE, CIRCUSOL, and SITA. Daniele is an accomplished academic, holding a PhD in Environmental Engineering from the University of Porto and degrees in environmental engineering, energy planning, and occupational health and safety from other esteemed institutions.

Gustavo Ezequiel Martinez has recently joined VITO, bringing his fresh and innovative perspective to the team. Gustavo, a chemical engineering graduate from Universidad Nacional de Tucumán, also holds a Nordic master’s degree with honours in Innovative and Sustainable Energy Engineering from Chalmers/Aalto University. His master thesis offered valuable insights into the influence of policies on the carbon capture, storage, and utilization (CCUS) system development in Sweden.

At VITO, Gustavo is deeply involved in assessing emerging energy technologies for EU-funded projects, employing LCA and other sustainability tools. His role in the ECO2Fuel project is particularly crucial, where he evaluates the environmental impacts of the value chain using prospective LCA.

Gabriela Espadas Aldana is the latest addition, having joined the Vlaamse Instelling voor Technologisch Onderzoek (VITO) team. Gabriela’s rich educational background includes a PhD in Agro-resource sciences from the National Polytechnic Institute of Toulouse, a bachelor’s degree in Chemical-Industrial-Engineering from the Autonomous University of Yucatán, and a master’s degree in Green Chemistry and Processes for Biomass from INP Toulouse-ENSIACET.

Her doctoral research focused on the sustainability of French olive oil production through LCA. Gabriela is not only an academic but also brings practical experience as an Environmental Consultant, having conducted several LCA and Circular Economy projects in the private and public sectors. At VITO, she continues to assess the environmental impact of future-oriented energy technologies. Within ECO2Fuel, as part of the VITO-SESAM-LCA team, Gabriela will evaluate the sustainability of the full value chain using the LCA methodology.