Categories
Project News

Transforming Tomorrow: The ECO2Fuel Project’s Revolutionary Approach to Tackling Climate Change

In a world grappling with the challenges of climate change, the ECO2Fuel project emerges as a beacon of innovative solutions. This informative video delves into the heart of ECO2Fuel, a cutting-edge initiative aimed at converting CO2 emissions into sustainable fuels. Through engaging visuals and expert insights, the video unravels how this project harnesses renewable energy to mitigate environmental impacts. It’s a must-watch for anyone interested in the future of green technology and the European Union’s strides towards a sustainable future. Get ready to be inspired and enlightened by this groundbreaking journey into a cleaner, greener tomorrow.

Categories
Project News

ECO2Fuel Welcomes Trio of Sustainability Experts to Forge Ahead in Clean Energy Research

The ECO2Fuel consortium is proud to announce the addition of three distinguished members to its team, each bringing a wealth of knowledge and expertise to our innovative and sustainable energy mission.

Daniele Costa joins us as a seasoned Senior Researcher and Project Manager in Sustainable Energy Systems Assessment & Modelling at VITO. With over 15 years in the field, Daniele has a profound understanding of life cycle thinking tools, including prospective Life Cycle Assessment (LCA) and Life Cycle Sustainability Assessment (LCSA). Her prestigious career spans across major energy industry companies and renowned universities like the University of Porto and Vrije Universiteit Brussel (VUB). Daniele is an acclaimed author of over 30 peer-reviewed publications and has played significant roles in various R&D projects, particularly those funded by the European Union. Her expertise is especially relevant in bioenergy, bioeconomy, and forest-based industries.

At VITO, Daniele dedicates her efforts to the prospective sustainability assessment of energy technologies in H2020 and HEurope Projects, contributing to groundbreaking work in projects such as PERCISTAND, SOLMATE, CIRCUSOL, and SITA. Daniele is an accomplished academic, holding a PhD in Environmental Engineering from the University of Porto and degrees in environmental engineering, energy planning, and occupational health and safety from other esteemed institutions.

Gustavo Ezequiel Martinez has recently joined VITO, bringing his fresh and innovative perspective to the team. Gustavo, a chemical engineering graduate from Universidad Nacional de Tucumán, also holds a Nordic master’s degree with honours in Innovative and Sustainable Energy Engineering from Chalmers/Aalto University. His master thesis offered valuable insights into the influence of policies on the carbon capture, storage, and utilization (CCUS) system development in Sweden.

At VITO, Gustavo is deeply involved in assessing emerging energy technologies for EU-funded projects, employing LCA and other sustainability tools. His role in the ECO2Fuel project is particularly crucial, where he evaluates the environmental impacts of the value chain using prospective LCA.

Gabriela Espadas Aldana is the latest addition, having joined the Vlaamse Instelling voor Technologisch Onderzoek (VITO) team. Gabriela’s rich educational background includes a PhD in Agro-resource sciences from the National Polytechnic Institute of Toulouse, a bachelor’s degree in Chemical-Industrial-Engineering from the Autonomous University of Yucatán, and a master’s degree in Green Chemistry and Processes for Biomass from INP Toulouse-ENSIACET.

Her doctoral research focused on the sustainability of French olive oil production through LCA. Gabriela is not only an academic but also brings practical experience as an Environmental Consultant, having conducted several LCA and Circular Economy projects in the private and public sectors. At VITO, she continues to assess the environmental impact of future-oriented energy technologies. Within ECO2Fuel, as part of the VITO-SESAM-LCA team, Gabriela will evaluate the sustainability of the full value chain using the LCA methodology.

Categories
Project News

The Race to Develop Efficient Catalysts for CO2 Electrolysis

As nations around the world strive to combat climate change, new technologies are needed to reduce greenhouse gas emissions. One promising area is CO2 electrolysis—using renewable electricity to convert CO2 into value-added carbon-based fuels and chemicals. However, realizing this technology at scale requires overcoming key challenges in the development of electrocatalysts.

The Race to Develop Efficient Catalysts for CO2 Electrolysis

Electrocatalysts accelerate the reactions at electrodes to drive the CO2 conversion process. But efficiently catalyzing CO2 reduction reactions has proven difficult. The process requires high energy input to activate the stable CO2 molecule, often resulting in high overpotentials. This leads to low efficiency and selectivity.

To make CO2 electrolysis commercially viable, scientists must discover new catalysts that can:

  • Drive CO2 reduction at high rates but with low overpotentials, maintaining a high electrical efficiency.
  • Selectively produce target fuels like methanol or ethanol rather than a mixture of products.
  • Use abundant, non-critical materials for scalability and avoiding supply risks.
  • Demonstrate long-term stability for sustained industrial operation.
  • Allow high catalytic activity at the low temperatures optimal for the polymer membranes and cells.
  • Be produced economically at scale and integrated into electrode and cell fabrication.

Both the cathode and anode reactions require next-gen electrocatalyst innovation. On the cathode side, copper-based materials have shown promise for converting CO2 to hydrocarbons and alcohols. But further tuning through nanostructuring and doping is needed to enhance selectivity and reduce overpotentials.

Meanwhile, non-precious metal alternatives are needed for the oxygen evolution reaction at the anode. Metal oxides like nickel-iron oxides have potential but require optimization for activity and durability.

Researchers are also investigating innovative techniques like computational modeling and machine learning to accelerate electrocatalyst discovery and optimization.

By surmounting these interlinked catalyst challenges, researchers can unlock the full potential of CO2 electrolysis in the urgent fight against climate change. The race is on to develop the robust, selective, and scalable catalysts needed to turn CO2 into fuels sustainably.

Categories
Project News

Job Alert: Research Role in the ECO2Fuel Project

We are excited to announce an opening in our pioneering ECO2Fuel project. The primary aim of this position is to explore scientific inquiries in the realm of electrochemical carbon dioxide utilization. This specifically involves understanding the impacts of catalyst composition and morphology, reaction temperatures, reaction mediums, and the resulting carbon products. The successful candidate will contribute to the development of principles and gain a deeper insight into the chemistry of electrochemical CO2 utilization.

Additionally, the role encompasses the advancement of measurement and reaction techniques for both a 50 kW and a 1 MW carbon dioxide electrolyzer. Setting technical focuses in this area will also be an integral responsibility of the position holder. Join us in our endeavor to make strides in the field of sustainable energy and carbon utilization.

For detailed information, please visit https://www.dlr.de/dlr/jobs/desktopdefault.aspx/tabid-10596/1003_read-51778/

Categories
Related Topics

E-Fuels: The Carbon-Neutral Energy of the Future

The future of energy is here, and it’s called e-fuels. These advanced, carbon-neutral fuels are set to revolutionize the energy sector, offering a sustainable solution to the world’s growing energy demands. But what exactly are e-fuels, and how do they work? Let’s delve into the science behind this promising technology and explore its potential for transforming our global energy landscape.

Understanding E-Fuels

E-fuels, or synthetic fuels, are produced from hydrogen and CO2. The process, known as Power-to-X, converts renewable electricity into hydrogen through electrolysis. This hydrogen is then combined with carbon to produce fuels with high energy density, such as e-hydrogen, e-methane, e-methanol, or e-diesel.

These fuels are completely carbon-neutral, meaning they do not contribute to global warming. When burned, they release the same amount of CO2 that was used to produce them, resulting in a net-zero carbon footprint. This makes e-fuels a promising solution for reducing greenhouse gas emissions and combating climate change.

The Role of E-Fuels in the Future of Energy

E-fuels have the potential to play a crucial role in our transition to a carbon-neutral future. They offer several advantages over traditional fossil fuels and other renewable energy sources. For one, they can be used in existing combustion engines, making them a practical and cost-effective solution for reducing emissions from the transport sector.

Moreover, e-fuels can be integrated into the existing fuel infrastructure, providing a seamless transition from fossil fuels. They also contribute to energy security and stability, offering a reliable and sustainable source of energy that is not subject to the fluctuations of the fossil fuel market.

However, the production of e-fuels is currently more expensive than that of traditional fuels, and they are not yet produced on a large enough scale to meet global energy demands. As such, significant investment in research and development is needed to improve the efficiency of e-fuel production and bring down costs.

The Future is Bright for E-Fuels

Despite the challenges, experts are optimistic about the future of e-fuels. With the right political support and technological innovation, e-fuels could become a major player in the global energy market. As we strive towards a carbon-neutral future, e-fuels offer a promising path forward, providing a sustainable and efficient solution to our global energy needs.

In conclusion, e-fuels represent a significant step forward in our quest for sustainable, carbon-neutral energy. As we continue to innovate and develop this promising technology, the future of energy looks brighter than ever.

Categories
Project News

Two eCCU pilot plants at one site

A raving success: Trilateral Online Workshop eCCU3 on Carbon Capture and Electrochemical Utilization of CO2 counts 424 participants from all over the world

Without a strong contribution from all economic sectors the net-zero climate protection targets cannot be achieved. Fossil feedstock for the chemical industry and fossil fuels for long-distance transport must be substituted. Therefore, the reduction of CO₂ emissions by carbon capture and utilization (CCU) and an intersectoral carbon cycle economy will be crucial for the transformation of the supply systems in the future.

Benefits of lectrochemical synthesis technologies

Very promising are electrochemical synthesis technologies (eCCU) to produce fuels and base chemicals from renewable electricity and captured CO₂ as they can simplify process chains, reduce components and avoid high temperatures and pressures. In contradiction, the conventional thermo-chemical synthesis routes based on CO₂ and electrolytically produced H2 typically require temperatures >300°C and pressures >20bar for the reverse water-gas-shift reaction and consecutive process steps. Additionally, eCCU reduces the need for a H2 infrastructure, lowers greenhouse gas emissions and offers security of supply and grid stability in an energy scenario relying heavily on renewable power generation.

eCCU3 Workshop

For the economic viability it is a great advantage to couple the cathodic CO₂ reduction with a suitable oxidation reaction at the anode in order to avoid the formation of oxygen which normally cannot be utilized and would then be released to the atmosphere. Coupling of oxidative and reductive electrosynthesis processes is a key to improve efficiency while reducing costs, wastes and emissions.

eCCU3 Workshop

Introducing the OCEAN project

That is exactly what is now demonstrated as part of the European Horizon 2020-funded project OCEAN (No. 767798; www.spire2030.eu/ocean) at RWE’s Innovation Center at Niederaussem, Germany.

The process was engineered by Avantium, a leading technology company in renewable chemistry from the Netherlands, and the 6 kWel unit was constructed by the Italian engineering company Hysytech. Potassium formate is produced simultaneously at both electrodes of the electrochemical cell, cathode and anode. At the anode, glycerol – a by-product of the biodiesel production – is the feedstock and at the cathode CO₂ is converted. In consecutive processes, oxalic acid can be produced from the formate as an intermediate for high-value specialty chemicals.

E-fuels will be needed in applications where the poor energy density of batteries or hydrogen is prohibitive (e.g. aviation and long-haul transportation by truck and ship). E-fuels like alcohols and hydrocarbons offer a way to store and transport chemical energy effectively with a high density at a large scale and for long periods of time.

eCCU3 Workshop

From LOTER.CO2M to ECO2Fuel

E-fuels allow to use the existing supply system and infrastructure and could defossilize the existing vehicle fleet. The project LOTER.CO2M (No. 761093; www.loterco2m.eu) has developed advanced low-cost electro-catalysts for the direct electrochemical reduction of CO₂ to methanol and other important industrial feedstocks, like ethanol and ethylene.

The developed electrochemical synthesis system works without the use of critical raw materials. A containerized 5 kWel demonstrator of the low-temperature and low-pressure CO₂-H2O co-electrolysis has been manufactured by the Belgian technology developer VITO. The LOTER.CO2M technology builds the basis for the follow-up project ECO2Fuel (No. 101037389) which aims at the realization of the worldwide first low-temperature 1 MW direct, electrochemical CO₂ conversion system to produce sustainable liquid e-fuels (C1-C4 alcohols) under industrially relevant conditions.

International Energy Agency
International Energy Agency

Klick here to download the full press release

The OCEAN and LOTER.CO2M units are fed by CO₂ that is captured by RWE’s amine-based post-combustion capture pilot plant. It’s operated 24/7 by the team on site. In the ongoing test program, the performance of the technology is assessed. The operational behavior during startup, ramp up/down cycles, operational parameter variations and continuous full-load operation are evaluated. Both projects have received funding from the European Union’s Horizon 2020 research and innovation programme under the grant agreements No 767798 (OCEAN) and 761093 (LOTER.CO2M).

Categories
Project News

eCCU3 – A Trilateral Online Workshop on Carbon Capture & Electrochemical CO2 Utilization

Carbon Capture and electrochemical Utilization of CO2 – From research to industrial application

Without a substantial contribution from all economic sectors the net-zero climate protection targets cannot be achieved. Fossil feedstock for the chemical industry and fossil fuels for long-distance transport must be substituted. Therefore, the reduction of CO2 emissions by carbon capture and utilisation (CCU) and an intersectoral carbon cycle economy will be crucial in the transformation of the future supply systems. Very promising are electrochemical synthesis technologies to produce fuels and base chemicals from water, renewable electricity, and captured CO2 as they avoid the effort of high synthesis temperatures and pressures.

In contradiction, the conventional thermochemical synthesis routes based on CO2 and electrolytically produced H2 typically require temperatures >300°C and pressures >20bar for the reverse-water gas-shift reaction and consecutive reaction steps. Additionally, eCCU reduces the need for a H2 infrastructure and the coupling of renewable power generation and carbon utilisation offers carbon-neutral chemicals and fuels, security of supply, grid stability, and emission reduction. 

Twenty-two partners from nine countries representing industry, research institutes, and universities are advancing the electrochemical CO2 utilisation in the three European-funded projects LOTER.CO2M, ECO2Fuel and OCEAN by demonstrating the complete technology chains at RWE’s Innovation Center at Niederaussem, comprising post-combustion CO2 capture and its utilisation in the electrochemical synthesis units of:

Critical Raw Material-free Low-Temperature Electrochemical Reduction of CO2 to Methanol The 5 kW demonstrator of LOTER.CO2M uses advanced, low-cost electrocatalysts and membranes for the direct electrochemical reduction of CO2 to methanol and ethanol by low-temperature CO2-H2O co-electrolysis. LOTER.CO2M passes the baton on to the follow-up project ECO2Fuel.

Large-scale low-temperature electrochemical CO2 Conversion to sustainable liquid fuels ECO2Fuel aims to design, manufacture, operate, and validate the worldwide first low-temperature 1 MW direct, electrochemical CO2 conversion system to produce sustainable liquid e-fuels (C1-C4 alcohols) under industrially relevant conditions.

Oxalic acid from CO2 using electrochemistry at demonstration scale The 6 kW unit of OCEAN demonstrates an innovative tandem electro-synthesis: Potassium formate is produced simultaneously at both electrodes of the electrochemical cell, cathode and anode. At the anode, glycerol – a by-product of the biodiesel production – is the resource. At the cathode CO2 is the feedstock. In consecutive processes oxalic acid can be produced from the formate.

The eCCU3 Workshop brings together the international experts from the three European demonstration projects, scientists from various research fields, and the public. It will provide a broad overview of the progress and potential of eCCU. The attendees can follow six presentations on all aspects of electrochemical CO2 utilisation and have the opportunity to discuss the status and prospects of the technology.

The three projects have received funding from the European Union’s Horizon 2020 research and innovation programme under the grant agreements No 767798 (OCEAN), 761093 (LOTER.CO2M) and 101037389 (ECO2Fuel).

The ECO2Fuel project will therefore consolidate the EU’s first-mover advantage in the green technology sector and strengthen its competitiveness with an innovative and disruptive technology to meet its emission targets by 2050.

Categories
Project News

The future of industrial scale production of carbon-neutral fuels and chemicals

The radical reduction of greenhouse gas emissions will require actions in all sectors that are inherently different and difficult, asking for an almost total re-thinking of our day-to-day energy management. This is how LOTER.CO2M was born.

Droughts and wildfires, freshwater shortages, floods, pests and invasive species, food and water wars, and climate migration are just some of the threats we face today with climate change in Europe.

As a forerunner in environmental protection worldwide, the European Union attempts to pull the plug on global warming with its many initiatives, especially the Green Deal. With its 2030 Climate Target Plan under the Green Deal, the European Commission proposes raising the EU’s ambition to reduce greenhouse gas emissions to at least 55% below 1990 levels by 2030.

However, this radical reduction of greenhouse gas emissions will require actions in all sectors that are inherently different and difficult, asking for an almost total re-thinking of our day-to-day energy management. This increases the hurdle to achieving efficient decarbonisation cost-effectively on time. And while it is true that a green carbon-neutral future isn’t achievable without implementing significant changes, we need to have low-threshold solutions allowing us to kickstart the transition without larger sacrifices to our everyday life quality.

With this in mind, we initiated LOTER.CO2M (This project has received funding from the European Union’s Horizon 2020 under the Grant Agreement number 761093) in 2018 attempting to convert CO2 with renewable electricity and water into carbon-neutral fuels and value-added chemicals in a single step without the need for hydrogen.

By doing this we replace the fossil carbon in fuels and critical chemicals with renewable, recycled carbon from CO2 and ease the transition to a carbon-neutral future without any compromises.

In three years of intensive research and development with partners from the industry (RWE, Bekaert, JohnsonMatthey EWII, and research organisations DLR, CNR, VITO, UVP and DTU) we developed critical raw material free catalysts, membranes, stack and a functioning 5kW CO2 electrolyzer and raised the technological readiness level from three to five.

Today, the electroylzer is operated at RWE in Niederaußem with waste CO2 and renewable electricity to efficiently generate carbon-neutral fuels (mainly carbon monoxide, methane, and ethylene).

Following this success story aiming to further our contribution to the EU’s climate target plan, we head out to upscale the LOTER.CO2M technology to build the world’s first direct CO2 electrolyzer at a 1MW scale and received the support of the European Union. As of October 2021, experts from 15 international organizations from industry and research are working together in the ECO2Fuel project to lift the LOTER.CO2M’s technology readiness level from 5 to 7 and push it toward commercialization for a greener and fossil fuel independent future.

The 1MW ECO2Fuel CO2 electrolyzer will convert 229 tons of CO2 to carbon-neutral fuels and chemicals considering a direct connection to renewable energy sources with an operation time of 2701 hours/year, which translates to converting 85kg of CO2 per hour.

The ECO2Fuel project will therefore consolidate the EU’s first-mover advantage in the green technology sector and strengthen its competitiveness with an innovative and disruptive technology to meet its emission targets by 2050.

Categories
Project News

Building a low-carbon, climate-resilient future

The European Union aims to develop solutions that will assure the carbon neutrality and climate resilience of Europe and to contribute substantially to similar achievements in neighbouring and developing countries in the second half of the century. This very ambitious goal requires a highly integrated approach through the multiple angles of society, economy, technology, industrial value chains and environment, health, land use and governance.

In ECO2Fuel, 15 international partners from the chemical, energy, hydrogen, mechanical engineering and automotive industry, and several research institutions set out to contribute to this goal by building the worldwide first CO2 conversion system to convert 742 tons of CO2 per year into economic and sustainable liquid e-fuels and chemicals. This will be achieved via a novel low temperature, single-step, and critical-raw material free electrochemical route that was developed in the European funded LOTER.CO2M project.

With this, ECO2Fuel aims to contribute to the EU goals in shaping a green future and counteract man-made climate change.

The project aims to demonstrate the potential of this technology on an industrial scale and secure Europe’s lead in the global race for the development of carbon dioxide recovery technologies. “With the international consortium of ECO2Fuel from Germany, Italy, Spain, Belgium, Denmark, Israel, Greece and the Netherlands, we will be driving the electrochemical CO2 reduction towards commercialization in the coming five years, assuring the leading position of the EU in developing green technologies for a brighter future”, says Dr. Schwan Hosseiny, Project Coordinator and Scientist at DLR.